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1.0 OBJECTIVES 

The objectives of this proposed research program are as follows: 

1.1 t o  be t te r  define the micromechanics of compressive f a i l u r e  i n  

composite materials; 

1.2 t o  evaluate the accuracy w i t h  which the growth of shear-crippling or 

other types of damage that  precedes f ina l  compressive f a i l u r e  can be 

predicted by current models; and 

1.3 t o  develop where necessary new models t o  predict  compressive f a i l u r e  

i n  composite laminates. 

2.0 S U M Y  OF ACCOMPLISHMENTS 

04/01/86 THROUGH 11/01/86 

The Dugdale analysis f o r  metals loaded i n  tension has been adapted t o  

model the f a i l u r e  of notched composite laminates loaded i n  compression. 

Compression testing detai Is, MTS alignment ver i f icat ion,  and equipment needs 

have been resolved. T h u s  f a r ,  only 2 ( ra ther  than 3 )  duct i le  material 

systems, HST7 and F155, have been selected for  study. A Wild M8 Zoom 

Stereomicroscope and necessary attachments for  video taping and 35mn pictures 

have been purchased. Currently, th is  compression t e s t  system i s  f u l l y  

operational. A specimen is loaded i n  compression, and load vs. shear- 

c r i p p l i n g  zone s ize  i s  monitored and recorded. Data from i n i t i a l  compression 

t e s t s  indicate t h a t  the Dugdale model does not accurately predict  the load vs. 

damage zone s i ze  relationship of notched composite specimens loaded i n  

compression. 
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3.0 INITIAL MODEL BASED ON DUGDALE ANALYSIS 

3.1 BACKGROUND 

Compression fracture  t e s t s  t o  determine the loading-rate e f f ec t s  on 

composite materials were completed a t  NASA Langley Research Center [Guynn and 

Elber, 19851. Specimens tested were 1" wide w i t h  a 1.5" gage l e n g t h ,  each 

containing a center hole. Hole diameters used i n  this s tudy  were 1/32", 

1/16", 1/8", and 1/4". The specimens were loaded i n  compression t o  fa i lure  i n  

a servo-control led hydraulic t e s t  s tand  under load-control. From preliminary 

results, the loading r a t e  was predetermined so that  the ramp time t o  f a i l u r e  

f o r  each test was approximately 1, 10, 100, 1000, 10000, or  100000 seconds. 

These specimens were tested i n  a la teral ly  st iffened g r i p  system as shown i n  

Figure 1. To provide la te ra l  alignment, the two grips were connected using 

l inear  bearings and close tolerance matching rods. Elevated temperature t e s t s  

were conducted w i t h  the g r i p  system enclosed i n  an oven a t  250OF. Two b r i t t l e  

(Narmco 5208 and 18081 matrices) and two duct i le  (General Electr ic  Company 

ULTEM and Imperial Chemical Industries P E E K  matrices) material systems were 

tes ted.  

An example of typical data from this ser ies  of tests i s  shown i n  Figure 

2. From this type of plot ,  temperature and loading r a t e  e f f ec t s  were studied 

f o r  each material and each hole size. A l inear  regression analysis was used 

t o  determine the best l inear  f i t  t o  the data. The 3 compressive f a i l u r e  modes 

observed were the multi-interleaf (brooming) i n  b r i t t l e  systems and the shear- 

c r i p p l i n g  or d r i v i n g  wedge i n  ducti le systems, as shown i n  Figure 3. 

3.2 OBSERVATIONS OF THE COMPRESSION FAILURES 

In these compression t e s t s ,  a damage zone, similar t o  a f l a t  fa t igue  

crack i n  metals, i n i t i a t e s  a t  the edges of  the hole and propagates across the 
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w i d t h  of the specimens t o  yield f ina l  fa i lure .  The l e n g t h  o r  size of th i s  

zone increases w i t h  increasing compressive load. The damage zone i s  v i r tua l ly  

symnetric (ignoring load and specime?.en assymetry) about the hole and, i t  is 

i n i t i a t e d  by local f i be r  buckling and/or shear c r i p p l i n g  i n  the edges of the 

hole. Figure 4 shows the in i t ia t ion  and propagation of th i s  damage zone 

across the specimen‘s w i d t h .  However, th i s  damage zone was observed only i n  

the two duct i le  material systems ( P E E K  and ULTEM).  I t  was observed [Guynn and 

Elber, 19851 t ha t  s table  growth o f  the shear-crippling zone i n  b r i t t l e  systems 

is  very short and cannot be optically detected pr ior  t o  catastrophic 

f a i lu re .  The appearance of the ductile compression fa i lures  is  very similar 

t o  the Dugdale p l a s t i c  zone model. T h u s ,  the Dugdale model was applied t o  

duc t i l e  notched composite laminates loaded i n  compression. 

3 . 3  DUGDALE MODEL 

In this section the derivation of the Dugdale model wi l l  be reviewed [ l ,  

2, 31. An analytical  solution f o r  the Dugdale model wil l  be obtained f o r  a 

through crack i n  a wide plate. The assumptions of the model a re  a s  follows: 

3 . 3 . 1  The material is  elastic-perfectly p las t ic ;  i .  e. ,  no s t r a in  

“ t  hardening. 

e - E  

3 . 3 . 2  The s t r e s s  s t a t e  i s  plane s t r e s s ,  requiring the p la te  t o  be 

re la t ive ly  t h i n .  

The geometry i s  a through crack i n  a wide plate.  3 . 3 . 3  

3 . 3 . 4  The p la s t i c  zone is a long narrow strip ahead of crack t i p .  
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This shape i s  defined as a Dugdale type zone, and i s  more 

l ikely t o  be f o u n d  i n  polymeric materials because of the 

variation i n  yield s t rength w i t h  hydrostatic tension. 

Dugdale assumed an effect ive crack length which i s  longer than the 

physical crack as shown i n  Figure 5. The assumption was tha t  an actual center 

crack o f  length 2a could be modeled as a crack of length 2(a + p ) ,  where p i s  

the length of the p l a s t i c  zone ahead o f  the crack t i p .  Furthermore, this 

plastic zone could be modeled as a crack w i t h  compressive surface t rac t ions  

equal t o  the yield s t r e s s ,  u o f  the material. The s ize  of p is  selected so 

tha t  the stress intensi ty  associated w i t h  the  compressive loading exactly 

cancels the s t r e s s  s i n g u l a r i t y  associated w i t h  the applied t ens i l e  s t r e s s  

yielding a f i n i t e  s t r e s s  distribution i n  the coupon. T h i s  c o n d i t i o n  o f  

YS' 

compatibility i s  expressed as follows: 

K = - K  or  K + K  = O  (1) 
0 P 0 P 

and i s  i l l u s t r a t ed  i n  Figure 6. 

A crack w i t h  an internal tensile s t ress  p distributed across i t s  length 

has a s t r e s s  intensi ty  factor  equal t o  

KI = pm. (2 )  

The Dugdale approach i s  modeled as a crack w i t h  internal wedge pressure. This 

pressure ac ts  as a se r ies  o f  evenly distributed wedge forces,  P (force per 

u n i t  p la te  thickness),  as i l lustrated i n  Figure 7. The general solution f o r  

an eccentrical  point force may be described by Green's function and i s  given 

by 

where KIA and K I B  are  the s t r e s s  intensity factors  fo r  crack tips A and B 
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K = 2 P -  JiT cos-'(x/a) JiT 

respect  i ve l y  . 
For  a uni formly appl ied i n te rna l  pressure, one may assume t h a t  t he  

pressure p octs  as a se r ies  o f  evenly d i s t r i b u t e d  crack opening fo rces  from s 

t o  t h e  crack t i p  (as i n  the  Dugdale case). Then, K may be determined from t h e  

f o l l o w i n g  i n t e g r a t i o n  over the crack surface: 

= p m  

e 
K = 2P g*. (5) 

a 

0 

0 

The i n t e g r a t i o n  i s  c a r r i e d  out  by a change o f  var iab le,  x = acosa, and t h e  

s o l u t i o n  i s  

which i s  t h e  same as (2). 

Apply ing (6) t o  the Dugdale cracn o f  Figure 5, t n m e  i n - e g r a l  mus, be taken from 

s = a to(a+p) . Thus, a must be subst i tu ted f o r  s, (a+p) f o r  a and - U  f o r  

P. Therefore, 
YS 

From F igu re  6c, 

K U = o m  (8) 

According t o  (I), K = -K and thus, 
U P 
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Neglecting higher order terms of the in f in i t e  se r ies  f o r  cosine, one may 

fur ther  reduce (10) t o  

3.4 APPLICATION OF THE DUGDALE MODEL 

The Dugdale model has been applied to  duct i le  notched composite laminates 

loaded i n  compression because the i r  fa i lures  resemble a f l a t  fa t igue crack i n  

metals except tha t  the s t r e s s  directions are reversed. An example of th i s  

damage zone was shown i n  Figure 4. The f ibe r  buckling zone (hereaf ter ,  crush 

zone) a t  each edge of the hole is compared t o  the p l a s t i c  zone i n  metals. We 

have assumed tha t  although the f ibers  are  broken, the debris i n  the crush zone 

continues t o  carry load. Thus, one m i g h t  assume that  as the crush zone grew 

across the specimen w i d t h ,  a constant crushing pressure a0 would e x i s t  over 

the length of p .  

Newman [ 3 ]  applied the Dugdale approach t o  (1) a crack i n  a f i n i t e  p la te  

and ( 2 )  t o  cracks emanating from a c i rcu lar  hole i n  a f i n i t e  plate .  His 

re su l t  fo r  cracks emanating from a circular hole i n  a f i n i t e  w i d t h  specimen is  

1 2 Fs Fs - aa  - - 'TI s in- l (c /d)  F: F i  = 0 (12) 'max h w 0 

where the geometry fo r  t h i s  so]ution i s  shown i n  Figure 8. 

For a given Smax, w ,  r ,  c, a, and ao, equation (12) i s  solved fo r  d using .an 
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i t e r a t i v e  techinque. However, p = d - c , and thus, the p l a s t i c  zone s ize  
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p is  determined. 

I n i t i a l l y ,  the work of this  grant has followed Newman's analysis for 

cracks emanating from a c i rcu lar  hole i n  a f i n i t e  w i d t h  specimen, b u t  the 

notched composite laminates were modeled w i t h  c = r. However, instead of 

using an i t e r a t ive  solution, curves of Smax versus p were generated 

w i t h  a0 as a parameter f o r  the various hole sizes. The rearranged solution 

f o r  equation (12) follows: 

' h  ' w  

where p = d - c. 

Appendix A d e t a i l s  the nomenclature, specimen configuration (Figure A . 1 ) ,  and 

geometry requirements f o r  this  solution. Appendix B contains the l i s t i n g  of 

the computer program w h i c h  generates the theoretical  curves of Smax vs. p. 

Figure B . l  shows an example o f  the curves generated fo r  each par t icu lar  hole 

size.  

(14) 

4.0 RESULTS FROM NASA WORK AT TAMU 

Data from two compression t e s t s  a t  Texas A&M University are  presented i n  

Figures 9 and 10. NASA Langley (John Whitcomb) presently has a VHS video tape 

of the specimen fai led i n  Figure 10. From these plots ,  i t  i s  obvious tha t  the 

Dugdale model does not accurately predict  the load-damage zone s i ze  

re la t ionship of notched composite specimens loaded i n  compression. 

Possible reasons that  t h i s  model does not exactly f i t  the data a re  as 

follows: 

4.1 The const i tut ive relationship used i n  the Dugdale model is  not an 
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accurate description of material response in the crush zone. 

4.2 The crush zone was only measured on one side of the specimen. Since 

the actual crush zone is not perfectly sjmnetric, p should be the 

average of 4 measurements, 2 on each side of the specimen. 

5.0 WORK PLANNED FOR REMAINDER OF MIS CONTRACT YEAR 

Future work on this grant includes: 

* 
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5.1. 

5.2 

5.3 

5.4 

testing 3 ductile material systems containing 3 hole sizes per 

materi a1 ; 

determining a three-dimensional schematic of the damage zone using 

sectioning techniques and electron microscopy; 

developing a better model for these compression failures; 

verifying the agreement between the model and the test data for the 

3 duct i 1 e materi a1 systems. 

5.5 EXPERIMENTAL FACILITIES 

This section details the fully operational equipment and materials 

presently available for the completion of the work of this grant. 

5.5.1 Equipment 

The damage development adjacent to the center hole which precedes fina 

failure is monitored using a newly acquired Wild M8 Zoom Stereomicroscope 

This system includes magnification of 2.4X to 160X at working distances o f  1" 

to 7", respectively, with capability for 35mn pictures and Beta or VHS format 

video recording of the damage development. The specimens are illuminated with 

one of two sources, either a fiber optics system oblique to the specimen or a 

coaxial system perpendicular to the specimen to detail surface relief. This 

system is shown in Figure 11. In order to monitor both sides of the specimen 
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simultaneously, a rotat ing mirror i s  being added to  this system. To quantify 

the s t r a i n  f i e l d s  around the damage, or crush zone, an interferometric system 

will be added t o  our present experimental s e t  up. This informatim s h w l d  

allow us t o  determine through the thickness damage before i t  i s  v i s ib l e  on the 

surface of the specimen. Or. Chris Burger wi l l  a s s i s t  i n  the implementation 

of this capabi l i ty  which wi l l  allow the measurement of (1) out-of-plane 

displacements and ( 2 )  in-plane strains. Furthermore, an acoustic emission 

device will  be added t o  the specimen t o  aid i n  the detection of microbuckling, 

pr ior  t o  any v is ib le  surface damage. 

5.5.2 Materials 

The present 48-ply panel of AS4/PEEK, [+45/O2/+45/O2/+45/O/90] 2s, has 

been sacr i f iced fo r  trial-and-error specimens t o  get the system operating 

optimally. Additionally, the panel has not exhibited the ductile 

cha rac t e r i s t i c s  observed i n  previously tested panels of IC1 PEEK.  The future  

work of th i s  grant wi l l  compare data from 3 duc t i le  material systems, 3 hole 

s izes  per material. However, the best comparison w i l l  be accomplished i f  the 

3 material systems have the same stacking sequence. Furthermore, the 

interferometric techniques may be optimized by applying a f ine  mesh of scrim 

cloth t o  the panel surfaces when the panels are  manufactured. The stacking 

sequence selected is [ (0/+45/90)s]q. Presently, one panel of T6C145/F155 

(prepreg supplied by Hexcel) has been manufactured a t  Texas A&M University, 

and we are expecting one panel of HST7 inter leaf  material from Bell Helicopter 

i n  Fort Worth, Texas. Additionally, NASA Langley has agreed t o  supply the 

t h i r d  panel of a duct i le  material system of the same stacking sequence. 

10 
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5.6 BULK DAMAGE ZONE ASSESSMENT 

5.6.1 Introduction 

Compression fa i lures  i n  notched composite laminates are preceded by the 

development of a damage zone which grows w i t h  increasing compressive load. 

T h i s  damage zone i s  adjacent t o  the  center hole and is  in i t i a t ed  by local 

f iber  buckling and/or shear crippling i n  the edges of the hole. As the 

compressive load increases, the damage zone progresses across the w i d t h  of the 

specimen t o  f ina l  fa i lure .  Although the f ina l  compressive f a i l u r e  modes have 

been observed and reported [ 4 ] ,  t h e  de t a i l s  of the damage progression and 

development pr ior  t o  catastrophic fa i lure  remain unclear. Micrographs o f  

G R / P E E K  151 and buckled 0' f ibers  i n  composite laminates [ 4 ]  ex i s t ,  b u t  

d e t a i l s  of the scanning electron microscope (SEM) conditions are  not 

included. The purpose of this  study i s  t o  section through the thickness of a 

damaged specimen, examine each section i n  the SEM, and determine the extent of 

the f i b e r  buckling zone. 

5.6.2 Materials and Methods 

The laminate selected for  this s t u d y  consists o f  h i g h  s t r a i n  carbon 

f ibe r s  (AS4) embedded i n  a semi-crystalline thermoplastic known as 

polyetheretherketone ( P E E K ) .  PEEK i s  an aromatic polyether res in  which is  

primarily useful because of i t s  exceptional toughness as  well as chemical 

res is tance.  PEEK i s  sold under the trade name "Victrex" PEEK by Imperial 

Chemical Industries,  Limited (ICI) - United Kingdom and recently became 

avai lable  i n  1981 [6]. The particular specimen selected f o r  this study is  a 

48-ply notched composite laminate of AS4/PEEK. The laminate stacking sequence 

i s  [+_45/0,/+45/0,/+45/0/90]~s. This material was supplied by the grant  

sponsor, NASA Langley Research Center - Hampton, Virginia, b u t  o r ig ina l ly  

manufactured by ICI. 

11 
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Compression tests have been conducted in a specially designed ultra high 

axial alignment MTS (Material Test System) machine in the Materials and 

Structures Laberatory of Texas A&M University. The speciner,s tested were 

loaded in compression to failure in the servo-controlled hydraulic test stand 

under displacement control at a relatively slow rate of 0.001 in./min. to 

provide more stable growth o f  the shear-crippling zone. The damage 

development adjacent to the center hole which preceded final failure was 

monitored using the Wild M8 Zoom Stereomicroscope. Prior to catastrophic 

failure, some tests were interrupted to provide specimens with significant 

damage for sectioning studies of the shear-crippling zone. 

Compression specimens tested were 1" wide with a 2" gage length, each 

containing a center hole. Hole diameters were 1/1611, 1/8", and 1/4". A 

specimen containing a fiber microbuckling zone of significant size has been 

selected to section. This specimen is 0.24" thick and has a center hole of 

diameter 0.125". Figure 12a shows a detailed schematic of the specimen 

configuration. In order to section through the damage zone, the center one- 

quarter-inch of length (Figure 12b) will be cut from the compression specimen 

using a Struers Accutum Precision Saw (diamond blade). This horizontal center 

section will be cut along its vertical centerline into two halves. Each of 

these halves will be mounted in a plastic stub. One half will be sectioned 

and studied through the thickness of the laminate while the other half will be 

sectioned across the width of the specimen from the edge of the hole to the 

edge of the specimen. The two sections will then be studied in a Jeol 25 

Scanning Electron Microscope. The Struers Precision Saw will be utilized for 

the major sectioning cuts, while the thinner cuts and final polishing 

(preparation for SEM) wi 1 1  be accompli shed using a microprocessor control led 

grinding and polishing machine also manufactured by Struers (Abramin Automated 
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Polishing Unit). 

The first observations in the SEM will be of the actual microbuckled 

zone, prior to any polishing. Initially, the two inounted specimens Kill be 

examined without a conductive coating to determine if an acceptable SEM image 

(particularly no charging) is possible. Because of the high conductivity of 

the carbon fibers and low conductivity in the resin and plastic mount, it is 

expected that each specimen surface will need to be sputter coated with a 

layer of gold palladium approximately 2 0 0 A  thick. Since the fibers are 

buckled out of plane of the specimen, a long working distance (48mm) and small 

aperature will be selected to obtain maximum depth o f  field for these first 

micrographs. The highly polished surfaces resulting from the sectioning 

process may make it possible to observe the specimen sections using the 

shorter working distance (lOmm), thus allowing more resolution of each 

section. In all cases, the optimum accelerating voltage will be determined to 

obtain the best specimen image and still minimize specimen charging. Although 

experimental work on textile materials, metals, and thin films [7] shows the 

effects of varying the operating conditions of the SEM, optimum determination 

of the correct combination of these conditions for AS4/PEEK is expected to be 

a trial-and-error process. 

5.7 ADAPTING MODEL 

Future work on this grant will include an attempt to develop a model 

which will better describe the relationship between the remotely applied 

compressive stress and the growth in the crush zone size. Possible solutions 

are as follows: 

1. Using interferometric techniques, determine strain distribution 

around, and if possible, in the crush zone. Paul Tan of Analytical 
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Services & Materials, Inc. (ASM) a t  NASA Langley i s  using his 

boundary element code to  numerically determine the  stress 

dis t r ibut ion around the ho2es. Our experimental results will be 

compared w i t h  his analytical resul ts .  

2. Different const i tut ive relationships f o r  the crush zone may be 

postulated and incorporated i n  a f i n i t e  element model t o  determine 

w h i c h  one yields  an accurate prediction of the s ize  and shape of the 

damage zone as will as the surrounding s t r a in  f ie ld .  

More quantitative c r i t e r i a  f o r  the in i t i a t ion  o f  shear c r i p p l i n g  as  

well as unstable propagation of this  zone should a l so  be 

forthcoming. 

3.  

6.0 SUWARY 

Notched composite laminates of AS4/PEEK have been loaded i n  compression 

t o  f a i lu re .  From the load-damage zone s ize  data, i t  has been determined tha t  

the Dugdale analysis does not accurately predict this relationship.  Future 

work includes the incorporation of a more r e a l i s t i c  const i tut ive model which 

r e f l e c t s  these compression f a i lu re s  into a Dugdale type analysis,  checking i t s  

accuracy f o r  3 material systems, each containing 3 hole sizes.  

E .  Gail Guynn 

Walter L. Bradley 
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and 

SPEC IMEN CONFIGURATION 
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NOMENCLATURE 

Q = Constraint factor 

bk 
C = Half crack length, in. 

d = Half crack length plus compressive plastic zone 

= Dimensions for partially loaded crack, in. (k = 1,2) 

width, in. 

Fhs = Boundary-correction factor for the circular hole, 

due to remote uniform stress 

Fha = Boundary-correction factor for a circular hole in 

an infinite plate, partially loaded crack 

Fws = Boundary-correction factor for a two symmetric cracks 

emanating from a circular hole in a finite-width 

plate subjected to a uniform stress 

Fwu = Boundary-correction factor for two symmetric cracks 

emanating from a circular hole in a finite width 

plate subjected to partial loading 

K = Stress intensity factor, psi-/in 

P = Length of compressive crush or damage zone, in. 

r = Hole radius, in. 

Smax = Remotely applied stress, psi 

= Flow stress, psi 0 a 

W = Specimen half width, in. 
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GEOMETRY REQUIREMENTS 

r b X = 7  and y = 7 

r - 50.5 
W 

d - 50.7 
W 

O r x 5 l  
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Smax 

0 
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Fig. A. 1. Specimen configuration for the Dugdale model applied to open hole 
composite laminates loaded i n  compression. 
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APPENDIX B 

PROGRAM L I S T I N G  



10 ! DUGDALE MODEL applied to composites in compression loading. 
20 ! 

e 

0 

0 

0 

0 

60 
70 
80 
90 
100 
110 
120 
130 
140 
145 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 

30 OPTION BASE 1 
31 ! PLOTTER IS 13, "GRAPHICS" 
32 PLOTTER IS 7 , 5 ,  "9872A" 
33 PENUP 
34 SCALE 0,. 50,0,100000 
36 RXES .01,10000,0,0 
40 ! PRINTER IS 0 
50 
ENCTH , " ,3X, " RHO, " ,5X , I' S 1 GO, I' IMAGE 3X, "SMAX, 'I, 2X, "ALPHA", 2X, "HOLE RADIUS, ' I ,  2X, "HALF WIDTH, ", 2X,  "CRHCK L 

! 
IMAGE 4X,"PSI", lJX,"IN", 11X,"IN", 12X,"IN", 10X,"IN",6X,"PSI" 
! 
IMAGE 
! 

6D9 6x9 D, 6x9 D. DDDD 9x9 D. DD, 9x9 D. DDDD, SX, D. DDDD, 4x9 60 

! PRINT USING 50 
! PRINT USING 70 

INPUT "Sig0, Alpha, R, W ,  C, Symmetric CY or N)",Sig0,Alpha,R,W,C,NS 
FOR Sig0-10000 TO 100000 STEP 10000 
PENUP 

GRAPHICS 
RAD 
! 
D=Rho+C 
! 
Bl=C 
B2=D 
Lam bda=R/ D 
! 
F1=.707+.765*Lambda+.282+LambdaA2+.74*LambdaA3+.87~*Lambda~4 
! 
F2=1+.358*Lambda+1.425*LambdaA2-l.578*LambdaA3+~.l56*Lambd~~4 
! 
IF NS="Y" THEN GOTO 350 
! 
Fn=Fl 
! 
GOTO 50 
! 
Fn=F2 
! 
Fhs=Fn*SQR(l-Lambda) 
! 
F w s = S Q R ~ l / C O S ~ P I * R ~ 2 ~ W ~ ~ C O S ~ P I * D ~ 2 ~ W > ~  
! 
Rl=-. 02*LambdaA2+. 558*LombdaA4 
! 
A2=.221*LambdaA2+.B46*LambdaA4 
! 
Cammal=Bl/D 
! 

FOR Rh0=.001 TO m50 STEP e001 

. 
e 



a 

0 

0 

a 

470 
480 
490 
500 
510 
520 
530 
540 
550 
) 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 

G amrn a2 =B 2 /D 
! 
Conl=l+Rl~(l-Lambda)+3*R2~2~~l-Lambda?A2 
! 
C o n 2 = R l ~ ( l - L a m b d a ) + ~ 4 - t a m m a 2 ) * R 2 ~ 2 ~ ~ l - L a m b d a ~ ~ 2  
! 

Con3=PI*D/2/W 
! 
Bkl=SIN<PI*Bl/2/W)/SIN(Con3) 
! 
Bk2=SIN(PI*B2/2/W)/SIN<Con3) 
! 
Con4=SQR(l/COS<Con3)) 
! 

710 ! PRINT LIN(1) 
728 ! 
721 PLOT Rho,Smax 
730 ! PRINT USING 98;Smax,Alpha,R,W,C,Rho,Sig0 
740 NEXT Rho 
741 NEXT SigO 
750 G O T 0  130 
760 END 

a 

I 

e 



Fig .  B.  1. Theoretical Dugdale curves of remote compressive stress vs. damage 
zone size w i t h  the crushing pressure as a parameter. (a) Hole diameter i s  
1/4".  (b) Hole diameter i s  1/8". ( C )  Hole diameter i s  1/16". 



LIST OF FIGURES 

0 

a 

a 

0 

e 

a 

e 

Fig. 1. Laterally stiffened linear-bearing grip system. 

illustrating temperature effects. 
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Fig. 3. Three types of final compressive failure modes. (a) grooming in 
T300/5208. (b) Shear-crippl ing in AS4/PEEK. (c) Driving wedge in 
C12000/ULTEM. 

Fig. 4. Initiation and propagation of damage zone prior to compressive 
failure in an AS4/PEEK specimen. Hole diameter is 0.062511. Damage zone 
lengths are (a) 0.020", (b) 0.03011, (c) 0.050" and 0.120", and (d) 0.140" 
and 0.1401'. 

Fig. 5. Dugdale crack. 

Fig. 6. Crack tip stress intensity. (a) Stress singularity at crack tip of 
tensile loaded coupon. (b) Compressive stress intensity at crack tip 
attributed to compressive surface stresses over the plastic zone. (c) Finite 
stress distribution in tensile loaded coupon. 

Fig. 7. Crack with applied wedge forces where P = force per unit plate 
thickness. 

Fig. 8. Geometry for Newman's analysis. 

Fig. 9. Applied compressive stress vs. crush zone size for 0.125" hole. 

Fig. 10. Applied compressive stress vs. crush zone size for 0.125" hole. 

Fig. 11. Compression test facility with stereomicroscope and video 
attachments. 

Fig. 12. Specimen configuration. (a) Compression test specimen. 
(b) Specimen for sectioning studies. 

Fig. A. 1. Specimen configuration for the Dugdale model applied to open hole 
composite laminates loaded in compression. 

Fig. B. 1. Theoretical Dugdale curves of remote compressive stress vs. damage 
zone size with the crushing pressure as a parameter. (a) Hole diameter is 
1/4". (b) Hole diameter is 1/8". (c) Hole diameter is 1/16". 
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Fig .  1. L a t e r a l l y  s t i f fened  l inear-bearing g r i p  system. 
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Fig. 2. Typical notched compressive strength-time to failure diagram 
illustrating temperature effects. 
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Fig. 3. Three types of final compressive failure modes. (a) Brooming in 
T300/5208. (b)  Shear-crippl ing in AS4/PEEK. (c) Driving wedge In 
C12000/ULTEM. 
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a Fig. 4. In i t ia t ion  and propagation of damage zone prior t o  compressive 
f a i l u r e  in  an AS4/PEEK specimen. Hole diameter i s  0.0625". Damage zone 
lengths are  (a)  0.020", (b) 0.030", (c)  0.050" and 0.120", and (d)  0.140" 
and 0.140". 
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Fig. 5. Dugdale crack. 
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Fig. 6. (a) Stress singularity at crack tip of 
tensile loaded coupon. (b) Compressive stress intensity at crack tip 
attributed to compressive surface stresses over the plastic zone. (c) Finite 
stress distribution in tensile loaded coupon. 

Crack tip stress intensity. 
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Fig .  7. 
thickness. 

Crack w i t h  applied wedge forces where P = force per u n i t  p la te  
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Fig.  8. Geometry for Newman's analysis. 
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Fig.  11. Compression t e s t  f a c i l i t y  w i t h  stereomicroscope and video 
attachments. 
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